• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Koopman Operator Approximation Under Negative Imaginary Constraints

    Thumbnail
    View/Open
    Koopman Operator Approximation Under.pdf (1.247Mb)
    Date
    2023-01-01
    Author
    Mabrok, Mohamed A.
    Aksikas, Ilyasse
    Meskin, Nader
    Metadata
    Show full item record
    Abstract
    Nonlinear Negative Imaginary (NI) systems arise in various engineering applications, such as controlling flexible structures and air vehicles. However, unlike linear NI systems, their theory is not well-developed. In this letter, we propose a data-driven method for learning a lifted linear NI dynamics that approximates a nonlinear dynamical system using the Koopman theory, which is an operator that captures the evolution of nonlinear systems in a lifted high-dimensional space. The linear matrix inequality that characterizes the NI property is embedded in the Koopman framework, which results in a non-convex optimization problem. To overcome the numerical challenges of solving a non-convex optimization problem with nonlinear constraints, the optimization variables are reformatted in order to convert the optimization problem into a convex one with the new variables. We compare our method with local linearization techniques and show that our method can accurately capture the nonlinear dynamics and achieve better control performance. Our method provides a numerically tractable solution for learning the Koopman operator under NI constraints for nonlinear NI systems and opens up new possibilities for applying linear control techniques to nonlinear NI systems without linearization approximations.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85163567956&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/LCSYS.2023.3290195
    http://hdl.handle.net/10576/52335
    Collections
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video