Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions
التاريخ
2015-07-22المؤلف
Mitra, MainakNimir, Hassan
Demeshko, Serhiy
Bhat, Satish S.
Malinkin, Sergey O.
Haukka, Matti
Lloret-Fillol, Julio
Lisensky, George C.
Meyer, Franc
Shteinman, Albert A.
Browne, Wesley R.
Hrovat, David A.
Richmond, Michael G.
Costas, Miquel
Nordlander, Ebbe
...show more authors ...show less authors
البيانات الوصفية
عرض كامل للتسجيلةالملخص
Two new pentadentate {N5} donor ligands based on the N4Py (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) framework have been synthesized, viz. [N-(1-methyl-2-benzimidazolyl)methyl-N-(2-pyridyl)methyl-N-(bis-2-pyridyl methyl)amine] (L<sup>1</sup>) and [N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L<sup>2</sup>), where one or two pyridyl arms of N4Py have been replaced by corresponding (N-methyl)benzimidazolyl-containing arms. The complexes [Fe<sup>II</sup>(CH<inf>3</inf>CN)(L)]<sup>2+</sup> (L = L<sup>1</sup> (1); L<sup>2</sup> (2)) were synthesized, and reaction of these ferrous complexes with iodosylbenzene led to the formation of the ferryl complexes [Fe<sup>IV</sup>(O)(L)]<sup>2+</sup> (L = L<sup>1</sup> (3); L<sup>2</sup> (4)), which were characterized by UV-vis spectroscopy, high resolution mass spectrometry, and Mössbauer spectroscopy. Complexes 3 and 4 are relatively stable with half-lives at room temperature of 40 h (L = L<sup>1</sup>) and 2.5 h (L = L<sup>2</sup>). The redox potentials of 1 and 2, as well as the visible spectra of 3 and 4, indicate that the ligand field weakens as ligand pyridyl substituents are progressively substituted by (N-methyl)benzimidazolyl moieties. The reactivities of 3 and 4 in hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions show that both complexes exhibit enhanced reactivities when compared to the analogous N4Py complex ([Fe<sup>IV</sup>(O)(N4Py)]<sup>2+</sup>), and that the normalized HAT rates increase by approximately 1 order of magnitude for each replacement of a pyridyl moiety; i.e., [Fe<sup>IV</sup>(O)(L<sup>2</sup>)]<sup>2+</sup> exhibits the highest rates. The second-order HAT rate constants can be directly related to the substrate C-H bond dissociation energies. Computational modeling of the HAT reactions indicates that the reaction proceeds via a high spin transition state.
معرّف المصادر الموحد
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84938401764&origin=inwardالمجموعات
- الكيمياء وعلوم الأرض [587 items ]