• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cry1Ac toxicity enhancement towards lepidopteran pest Ephestia kuehniella through its protection against excessive proteolysis

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2016-09-15
    Author
    Elleuch, Jihen
    Jaoua, Samir
    Tounsi, Slim
    Zghal, Raida Z.
    Metadata
    Show full item record
    Abstract
    Bacillus thuringiensis has been extensively used in agroecosystems for four decades due to its high specific toxicity. Strategies based on B. thuringiensis proteins combinations for the improvement of its activity present an important focus for biopesticides development. However, the widespread use of B. thuringiensis δ-endotoxins has often been challenged by a lack of understanding of the target insect physiology as well as its midgut biochemistry.In the present investigation, we have evidenced and explained the toxicity improvement of Cry1Ac δ-endotoxins against Ephestia kuehniella larvae through in vivo combination with P20 helper protein. Tracking the fate of Cry1Ac in tested midgut larvae showed considerable differences between δ-endotoxins produced in the presence of P20 and those produced in its absence which could explain the obtained larvicidal activity enhancement. The P20 presence slightly increased Cry1Ac inclusions solubility in E. kuehniella midgut conditions. However, a protection against excessive degradation of protoxin and toxin forms of Cry1Ac was strongly decreased in the case of δ-endotoxins produced in the presence of P20 as compared to those from P20 lacking control. Thus, the P20 protective effect on Cry1Ac after larvae ingestion has been proven. This finding could be helpful to further understand the roles of P20 helper protein in toxicity enhancement of B. thuringiensis toxins.
    URI
    http://www.sciencedirect.com/science/article/pii/S0041010116302148
    DOI/handle
    http://dx.doi.org/10.1016/j.toxicon.2016.07.014
    http://hdl.handle.net/10576/5277
    Collections
    • Biological & Environmental Sciences [‎933‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video