• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    IN-DEPTH CHARACTERIZATION OF MESENCHYMAL STEM CELLS-DERIVED EXTRACELLULAR VESICLES USING QUANTITATIVE PROTEOMICS

    Thumbnail
    View/Open
    Thesis-Master of Science (2.749Mb)
    Date
    2016
    Author
    Dib, Shaymaa S.
    Metadata
    Show full item record
    Abstract
    As they home in on injured tissue, modulate the immune system and support tissue repairing, mesenchymal stem cells (MSCs) are considered a promising tool for many therapeutic applications. In vitro, MSCs have been shown to differentiate into multiple cell types mainly of the mesodermal, and more rarely of the endodermal and ectodermal lineage under appropriate conditions. In vivo, however, the beneficial effects mediated by MSCs are mainly attributed to paracrine factors they provide. MSCs are known to secrete large amounts of extracellular vesicles (EVs). EVs are thought to play an important role in intercellular communication, transferring proteins, nucleic acids and lipids to acceptor cells. To identify factors that contribute to the therapeutics roles of MSCs-derived EVs, we characterized the proteins enriched in them. MSCs-derived EVs were isolated from conditioned medium of cultured bone marrow–derived MSCs by ultra-centrifugation steps differentially isolating microvesicles (MVs) and exosomes. We performed LC-MS/MS-based proteomic analysis using reductive dimethylation labeling for quantitation of vesicular proteins against MSC whole cell lysate. In total, we identified 5207 proteins. 4695 and 4386 proteins were quantified in MVs and exosomes, respectively. We further analyzed the up-regulated proteins in both types of vesicles. Functional enrichment analysis was performed and hints at a high contribution of both MVs and exosomes to therapeutic applications of MSCs. EV proteins were linked to broad biological roles including extracellular matrix organization, cell migration, wound healing and hemostasis. Our findings strengthen the idea that MSCs-derived EVs may be a valuable replacement for MSCs in therapy.
    DOI/handle
    http://hdl.handle.net/10576/5284
    Collections
    • Biomedical Sciences [‎47‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video