• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets

    Thumbnail
    عرض / فتح
    2020.coling-main.550.pdf (843.4Kb)
    التاريخ
    2020
    المؤلف
    Suwaileh, Reem
    Imran, Muhammad
    Elsayed, Tamer
    Sajjad, Hassan
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The widespread usage of Twitter during emergencies has provided a new opportunity and timely resource to crisis responders for various disaster management tasks. Geolocation information of pertinent tweets is crucial for gaining situational awareness and delivering aid. However, the majority of tweets do not come with geoinformation. In this work, we focus on the task of location mention recognition from crisis-related tweets. Specifically, we investigate the influence of different types of labeled training data on the performance of a BERT-based classification model. We explore several training settings such as combing in- and out-domain data from news articles and general-purpose and crisis-related tweets. Furthermore, we investigate the effect of geospatial proximity while training on near or far-away events from the target event. Using five different datasets, our extensive experiments provide answers to several critical research questions that are useful for the research community to foster research in this important direction. For example, results show that, for training a location mention recognition model, Twitter-based data is preferred over general-purpose data; and crisis-related data is preferred over general-purpose Twitter data. Furthermore, training on data from geographically-nearby disaster events to the target event boosts the performance compared to training on distant events.
    DOI/handle
    http://hdl.handle.net/10576/52850
    http://dx.doi.org/10.18653/v1/2020.coling-main.550
    المجموعات
    • علوم وهندسة الحاسب [‎2429‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video