Show simple item record

AdvisorKhattab, Tamer
AuthorAbumaali, Duaa
Available date2017-02-21T10:31:47Z
Publication Date2016
URIhttp://hdl.handle.net/10576/5288
AbstractInterference is a principal source of capacity limitations in today's multi-access multi-user wireless systems. Despite the fact that the capacity of interference channels is still an unsolved problem, the research community has already established a substantial work towards this goal. In effort to provide alternative attainable expressions for performance limits in interference channels, the concept of the Degrees of Freedom (DoF) has been introduced. DoF describes network capacity in terms of the number of maximum possible simultaneous interference-free streams. X-channel is defined where there are two transmitters, two receivers and each transmitter has an independent message for each receiver. Interference channel, broadcast channel and the multiple access channels are special cases of the X-channel. In this thesis, we further investigate the effect of a relay on the DoF of a single input single output (SISO) X-channel with no channel state information at transmitters (CSIT). In contrast to previous work, which has focused on two antennas at the relay to achieve the optimal 4/3 DoF, we focus on the case of a single antenna half duplex relay. We show that with a single antenna relay and delayed output feedback, the upper bound of 4/3 DoF for the X-channel is achievable and we provide the achievability scheme. We revisit the previously studied case of single antenna relay in the more practical setting of alternating CSIT. We show that the optimal 4/3 DoF achievability does not mandate full CSIT availability. For the case of partial alternating CSIT availability at the relay transmitters, we propose a scheme that can achieve the optimal 4/3 DoF and we deduce the minimum CSIT availability for the proposed scheme to achieve optimality.
Languageen
SubjectWireless systems
Performance limits
TitleON THE DEGREES OF FREEDOM OF THE RELAY X-CHANNEL
TypeMaster Thesis
DepartmentElectrical Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record