• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    MEASURING GEOMETRICAL TORTUOSITY OF POROUS MEDIA FROM 3D COMPUTED TOMOGRAPHY IMAGES

    Thumbnail
    View/Open
    Thesis-Master of Science (2.469Mb)
    Date
    2017-01
    Author
    Madhoun, Iman Tawfiq
    Metadata
    Show full item record
    Abstract
    Tortuosity is an important parameter that has a significant impact on many environmental processes and applications. Flow in porous media, diffusion of gases in complex pore structures, and transmembrane flux in water desalination are examples of the application of the micro-scale parameter. The main objectives of this thesis are to develop functional relationships that relate tortuosity to geometrical and topological parameters of porous media using three-dimensional (3D) computed tomography images, and select the best model that has the best capability to predict geometrical tortuosity. The objectives were achieved by implementing Random Paths MATLAB code that was developed in this work and compared with available Tort3D MATLAB code using high resolution 3D synchrotron computed tomography images of representative porous media. Tortuosity factors were computed from random tortuous paths of connected voxels (Random Paths Code) and tortuous paths derived from 3D medial surface of void space (Tort3D Code). Tortuosity factors were related to geometrical and topological parameters including porosity (∅), median grain diameter (d50), uniformity coefficient (Cu), coefficient of gradation (Cc), sphericity index (Si), roundness index (Ri), and specific surface area (SSA). Tort3D code was validated by comparing measured with predicted tortuosity factors from models reported in the literature. The two codes measured geometrical tortuosity of different sand systems effectively. However, they provided different tortuosity values, since they were developed using different concepts. Models were developed and predicted tortuosity values were compared with measured tortuosity values. Good agreement was found between predicted and measured tortuosity values with low error (less than 20%). Model 3 that considers ∅, d50, Cu, and Cc has best capability to predict tortuosity compared with other developed models.
    DOI/handle
    http://hdl.handle.net/10576/5290
    Collections
    • Environmental Engineering [‎52‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video