Folksonomy link prediction based on a tripartite graph for tag recommendation
المؤلف | Rawashdeh, Majdi |
المؤلف | Kim, Heung-Nam |
المؤلف | Alja'am, Jihad Mohamad |
المؤلف | El Saddik, Abdulmotaleb |
تاريخ الإتاحة | 2024-03-20T01:55:07Z |
تاريخ النشر | 2013 |
اسم المنشور | Journal of Intelligent Information Systems |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 9259902 |
الملخص | Nowadays social tagging has become a popular way to annotate, search, navigate and discover online resources, in turn leading to the sheer amount of user-generated metadata. This paper addresses the problem of recommending suitable tags during folksonomy development from a graph-based perspective. The proposed approach adapts the Katz measure, a path-ensemble based proximity measure, for the use in social tagging systems. We model a folksonomy as a weighted, undirected tripartite graph. We then apply the Katz measure to this graph, and exploit it to provide tag recommendations for individual users. We evaluate our method on two real-world folksonomies collected from CiteULike and Last.fm. The experimental results demonstrate that the proposed method improves the recommendation performance and is effective for both active taggers and cold-start taggers compared to existing algorithms. |
راعي المشروع | Acknowledgement This publication was made possible by a grant from the Qatar National Research Fund NPRP 09-052-5-003. |
اللغة | en |
الناشر | Springer |
الموضوع | Folksonomy Graph-based ranking Link prediction Social tagging Tag recommendation Tripartite graph |
النوع | Article |
الصفحات | 307-325 |
رقم العدد | 2 |
رقم المجلد | 40 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]