• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Folksonomy link prediction based on a tripartite graph for tag recommendation

    Thumbnail
    Date
    2013
    Author
    Rawashdeh, Majdi
    Kim, Heung-Nam
    Alja'am, Jihad Mohamad
    El Saddik, Abdulmotaleb
    Metadata
    Show full item record
    Abstract
    Nowadays social tagging has become a popular way to annotate, search, navigate and discover online resources, in turn leading to the sheer amount of user-generated metadata. This paper addresses the problem of recommending suitable tags during folksonomy development from a graph-based perspective. The proposed approach adapts the Katz measure, a path-ensemble based proximity measure, for the use in social tagging systems. We model a folksonomy as a weighted, undirected tripartite graph. We then apply the Katz measure to this graph, and exploit it to provide tag recommendations for individual users. We evaluate our method on two real-world folksonomies collected from CiteULike and Last.fm. The experimental results demonstrate that the proposed method improves the recommendation performance and is effective for both active taggers and cold-start taggers compared to existing algorithms.
    DOI/handle
    http://dx.doi.org/10.1007/s10844-012-0227-2
    http://hdl.handle.net/10576/53259
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video