Evaluation of Nitrogen and Water Management Strategies to Optimize Yield in Open Field Cucumber (Cucumis sativus L.) Production
Date
2023-12-01Author
Bello, Adewale SurajHuda, Samsul
Chen, Zhong Hua
Khalid, Muhammad Fasih
Alsafran, Mohammed
Ahmed, Talaat
...show more authors ...show less authors
Metadata
Show full item recordAbstract
Countries in arid climates, such as Qatar, require efficient water-saving strategies and nitrogen treatment for vegetable production. Vegetable importation constituted approximately USD 352 million of Qatar’s 2019 GDP; hence, enhancing local production is essential. This study investigated the effect of varying nitrogen and water levels on cucumber (Cucumis sativus L.) fruit yield. Various water management strategies were also evaluated. A split plot design was employed with two water levels (W1: 50% deficit irrigation, W2: 100% full irrigation) and three nitrogen levels (N1: 50 kg N ha−1, N2: 70 kg N ha−1, N3: 100 kg N ha−1) to examine cucumber yield and physiological response. Our findings revealed that using minimal drip irrigation and reducing nitrogen levels significantly enhanced the growth, SPAD index, fruit characteristics, and yield components of cucumber. Drip irrigation had a greater influence on cucumber production than nitrogen levels. Shoot height increased by 4% from W2N1 (T1) to W1N3 (T6) and 4.93% from W2N2 (T2) to W1N2 (T5). Fruit length and width increased by 10.63% and 13.41% from T2 and T1 to T5, respectively. The highest total yield occurred at T5, followed by T6, T2, W2N3 (T3), W1N1 (T4), and T1 at 34.5, 29.1, 27.6, 25.8, 25.2, and 20.4 t/ha, respectively. The optimal combination comprised 50% deficit irrigation (W1) and 70 kg N ha−1 (N2) nitrogen. These results suggest the importance of optimizing drip irrigation for achieving maximum cucumber fruit yield in arid climates.
Collections
- Marine Science Cluster [214 items ]