• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Malware Detection Method for Health Sensor Data Based on Machine Learning

    Thumbnail
    التاريخ
    2020
    المؤلف
    Liu, Hanwen
    Helu, Xiaohan
    Jin, Chengjie
    Lu, Hui
    Tian, Zhihong
    Du, Xiaojiang
    Abualsaud, Khalid
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Traditional signature-based malware detection approaches are sensitive to small changes in the malware code. Currently, most malware programs are adapted from existing programs. Hence, they share some common patterns but have different signatures. To health sensor data, it is necessary to identify the malware pattern rather than only detect the small changes. However, to detect these health sensor data in malware programs timely, we propose a fast detection strategy to detect the patterns in the code with machine learning-based approaches. In particular, XGBoost, LightGBM and Random Forests will be exploited in order to analyze the code from health sensor data. The codes are fed into them as sequences of bytes/tokens or just as a single byte/token (e.g. 1-, 2-, 3-, or 4-grams). Terabytes of program with labels, including benign and malware programs, have been collected. The challenges of this task are to select and get the features, modify the three models in order to train and test the dataset, which consists of health sensor data, and evaluate the features and models. When a malware program is detected by one model, its pattern will be broadcast to the other models, which will prevent malware program from intrusion effectively.
    DOI/handle
    http://dx.doi.org/10.1109/ICIoT48696.2020.9089478
    http://hdl.handle.net/10576/53537
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video