Show simple item record

AuthorElnour, Mariam
AuthorNoorizadeh, Mohammad
AuthorShakerpour, Mohammad
AuthorMeskin, Nader
AuthorKhan, Khaled
AuthorJain, Raj
Available date2024-04-02T06:04:48Z
Publication Date2023
Publication NameIEEE Access
ResourceScopus
ISSN21693536
URIhttp://dx.doi.org/10.1109/ACCESS.2023.3303015
URIhttp://hdl.handle.net/10576/53781
AbstractIn light of the advancement of the technologies used in industrial control systems, securing their operation has become crucial, primarily since their activity is consistently associated with integral elements related to the environment, the safety and health of people, the economy, and many others. This work presents a distributed, machine learning based attack detection and mitigation framework for sensor false data injection cyber-physical attacks in industrial control systems. It is developed using the system's standard operational data and validated using a hybrid testbed of a reverse osmosis plant. A MATLAB/Simulink-based simulation model of the process validated with actual data from a local plant is used. The control system is implemented using Siemens S7-1200 programmable logic controllers with 200SP Distributed Input/Output modules. The proposed solution can be adopted in the existing industrial control systems and demonstrated effective performance in real-time detection and mitigation of actual cyber-physical attacks launched by compromising the communication links between the process and the programmable logic controllers.
Languageen
PublisherInstitute of Electrical and Electronics Engineers Inc.
SubjectAttack detection
attack mitigation
false data injection (FDI)
industrial control system (ICS)
support vector machine (SVM)
TitleA Machine Learning Based Framework for Real-Time Detection and Mitigation of Sensor False Data Injection Cyber-Physical Attacks in Industrial Control Systems
TypeArticle
Pagination86977-86998
Volume Number11
dc.accessType Open Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record