• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الابحاث المتعددة التخصصات والتصاميم االذكية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الابحاث المتعددة التخصصات والتصاميم االذكية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Towards robust autonomous driving systems through adversarial test set generation

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    Towards robust autonomous driving systems through adversarial test set generation.pdf (1.665Mb)
    التاريخ
    2023-01-01
    المؤلف
    Unal, Devrim
    Catak, Ferhat Ozgur
    Houkan, Mohammad Talal
    Mudassir, Mohammed
    Hammoudeh, Mohammad
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Correct environmental perception of objects on the road is vital for the safety of autonomous driving. Making appropriate decisions by the autonomous driving algorithm could be hindered by data perturbations and more recently, by adversarial attacks. We propose an adversarial test input generation approach based on uncertainty to make the machine learning (ML) model more robust against data perturbations and adversarial attacks. Adversarial attacks and uncertain inputs can affect the ML model's performance, which can have severe consequences such as the misclassification of objects on the road by autonomous vehicles, leading to incorrect decision-making. We show that we can obtain more robust ML models for autonomous driving by making a dataset that includes highly-uncertain adversarial test inputs during the re-training phase. We demonstrate an improvement in the accuracy of the robust model by more than 12%, with a notable drop in the uncertainty of the decisions returned by the model. We believe our approach will assist in further developing risk-aware autonomous systems.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85142727361&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.isatra.2022.11.007
    http://hdl.handle.net/10576/53927
    المجموعات
    • الابحاث المتعددة التخصصات والتصاميم االذكية [‎32‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video