• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Detection of Botnet Attacks against Industrial IoT Systems by Multilayer Deep Learning Approaches

    Thumbnail
    عرض / فتح
    Cyber-Physical Mobile Computing, Communications, and Sensing for Industrial Internet of Things and Industry 4.0 2021.pdf (664.7Kb)
    التاريخ
    2022-01-01
    المؤلف
    Mudassir, Mohammed
    Unal, Devrim
    Hammoudeh, Mohammad
    Azzedin, Farag
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Industry 4.0 is the next revolution in manufacturing technology that is going to change the production and distribution of goods and services within the following decade. Powered by different enabling technologies that are also being developed simultaneously, it has the potential to create radical changes in our societies such as by giving rise to highly-integrated smart cities. The Industrial Internet of Things (IIoT) is one of the main areas of development for Industry 4.0. These IIoT devices are used in mission-critical sectors such as the manufacturing industry, power generation, and healthcare management. However, smart factories and cities can only function when threats to cyber security, data privacy, and information integrity are properly managed. In this regard, securing IIoT devices and their networks is vital to preserving data and privacy. The use of artificial intelligence is an enabler for more secure IIoT systems. In this study, we propose high-performing deep learning models for the classification of botnet attacks that commonly affect IIoT devices and networks. Evaluation of results shows that deep learning models such as the artificial neural network (ANN), the long short-term memory (LSTM), and the gated recurrent unit (GRU) can successfully be used for classifications of IIoT malware attacks with an accuracy of up to 99%.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85131214391&origin=inward
    DOI/handle
    http://dx.doi.org/10.1155/2022/2845446
    http://hdl.handle.net/10576/53957
    المجموعات
    • الشبكات وخدمات البنية التحتية للمعلومات والبيانات [‎142‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video