• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A polyethylene glycol (PEG) – polyethersulfone (PES)/multi-walled carbon nanotubes (MWCNTs) polymer blend mixed matrix membrane for CO2/N2 separation

    Thumbnail
    Date
    2021
    Author
    Wong, Kar Kit
    Jawad, Zeinab Abbas
    Chin, Bridgid Lai Fui
    Metadata
    Show full item record
    Abstract
    Recently, carbon capture utilizing membrane technology has received much attention to limit the adverse effect caused by rising carbon dioxide (CO2) concentration in the atmosphere as they are less energy intensive and more environmentally friendly. Among the type of membranes, mixed matrix membranes (MMMs) has shown promising gas separation results. In this study, polymer blend MMMs were fabricated using polyethylene glycol (PEG), polyethersulfone (PES), multi-walled carbon nanotubes (MWCNTs) and solvent N,N-dimethylformamide (DMF) using wet phase-inversion technique. Results shown that functionalized MWCNTs (MWCNTs-F) were able to enhance gas separation performance of MMM. Furthermore, the effect of MWCNTs-F loading (0.005 wt% to 0.03 wt%) and polymer composition (PEG-PES weight ratio of 20:20, 30:10 and 32:8) were also studied. Results shown both parameters affect the gas separation performance of MMMs. The best performance in term of CO2/Nitrogen (N2) selectivity is found to be 1.235 ± 0.002 for MMM fabricated with 30 wt% PEG, 10 wt% PES and 0.02 wt% MWCNTs-F. In addition, MMM synthesized with PEG-PES weight ratio of 20:20 can withstand a pressure of 1.2 bar, indicating high mechanical strength. Hence, it is applicable in the post combustion carbon capture industry as typical flue gas has a pressure of 1.01 bar.
    DOI/handle
    http://dx.doi.org/10.1007/s10965-020-02361-5
    http://hdl.handle.net/10576/54004
    Collections
    • Chemical Engineering [‎1198‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video