• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting infarction growth rate II using ANFIS-based binary particle swarm optimization technique in ischemic stroke

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    PIIS2215016123003710.pdf (1.701Mb)
    التاريخ
    2023
    المؤلف
    Al-Ali, Afnan
    Qidwai, Uvais
    Kamran, Saadat
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Ischemic stroke, a severe medical condition triggered by a blockage of blood flow to the brain, leads to cell death and serious health complications. One key challenge in this field is accurately predicting infarction growth - the progressive expansion of damaged brain tissue post-stroke. Recent advancements in artificial intelligence (AI) have improved this prediction, offering crucial insights into the progression dynamics of ischemic stroke. One such promising technique, the Adaptive Neuro-Fuzzy Inference System (ANFIS), has shown potential, but it faces the 'curse of dimensionality' and long training times as the number of features increased. This paper introduces an innovative, automatic method that combines Binary Particle Swarm Optimization (BPSO) with ANFIS architecture, achieves reduction in dimensionality by reducing the number of rules and training time. By analyzing the Pearson correlation coefficients and P-values, we selected clinically relevant features strongly correlated with the Infarction Growth Rate (IGR II), extracted after one CT scan. We compared our model's performance with conventional ANFIS and other machine learning techniques, including Support Vector Regressor (SVR), shallow Neural Networks, and Linear Regression. * Inputs: Real data about ischemic stroke represented by clinically relevant features. * Output: An innovative model for more accurate and efficient prediction of the second infarction growth after the first CT scan. * Results: The model achieved commendable statistical metrics, which include a Root Mean Square Error of 0.091, a Mean Squared Error of 0.0086, a Mean Absolute Error of 0.064, and a Cosine distance of 0.074.
    DOI/handle
    http://dx.doi.org/10.1016/j.mex.2023.102375
    http://hdl.handle.net/10576/54651
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video