• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Smart AMD prognosis through cellphone: an innovative localized AI-based prediction system for anti-VEGF treatment prognosis in nonagenarians and centenarians

    Thumbnail
    التاريخ
    2022
    المؤلف
    Qidwai, Uvais
    Qidwai, Umair
    Raja, Muhammad
    Burton, Ben
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Background and objective: Age-related macular degeneration (AMD) is one of the most common reasons for blindness in the world today. The most common treatment for wet AMD is the intravitreal injections for inhibiting vascular-endothelial-derived growth factor (VEGF). This treatment usually involves multiple injections and thus multiple clinic visits, which not only causes increased cost on national health services but also causes exposure to the hospital environment, which is sometimes high risk considering current COVID crisis. The treatment, in spite of the above concerns, is usually effective. However, in some cases, either the medicine fails to produce the anticipated favourable outcome, resulting in waste of time, medication, efforts, and above all, psychological distress to the patients. Hence, early predictability of anatomical as well as functional effectiveness of the treatment appears to be a very desirable capability to have. Method: A machine learning approach using adaptive neuro-fuzzy inference system (ANFIS) of two-sample prediction model has been presented that requires only the baseline measurements and changes in visual acuity (VA) as well as macular thickness (MAC) after four months of treatment to estimate the values of VA and MAC at 8 and 12 months. In contrast to most of the AI techniques, ANFIS approach has shown the capability of the algorithm to work with very small dataset as well, which makes it a perfect candidate for the presented solution. Results: The presented model has shown to have a very high accuracy (> 92%) and works in near-real-time scenarios. It has been converted into a smart phone App, OphnosisAMD, for convenient usage. With this App, the clinician can visualize the progression of the patient for a specific treatment and can decide on continuing or changing the treatment accordingly. The complete AI engine developed with the ANFIS algorithm is localized to the phone through the App, implying that there is no need for internet or cloud connectivity for this App to function. This makes it ideal for remote usage, especially under the current COVID scenarios. Conclusions: With a smart AI-based App on their fingertips, the presented system provides ample opportunity to the doctors to make a better decision based on the estimated progression, if the same drug is continued with (good/fair prognosis) or alternate treatment should be sought (bad prognosis). From a functional point of view, a prediction algorithm is triggered through simple entry of the relevant parameters (baseline and 4 months only). No internet/cloud connectivity is needed since the algorithm and the trained network are fully embedded in the App locally. Hence, using the App in remote and/or non-connected isolated areas is possible, especially in the secluded patients during the COVID scenarios. Graphical abstract:
    DOI/handle
    http://dx.doi.org/10.1007/s10792-021-02171-8
    http://hdl.handle.net/10576/54660
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video