عرض بسيط للتسجيلة

المؤلفShams, Wafaa Khazaal
المؤلفWahab, Abdul
المؤلفQidwai, Uvais A.
تاريخ الإتاحة2024-05-07T05:39:59Z
تاريخ النشر2012
اسم المنشورLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/978-3-642-34478-7_46
الرقم المعياري الدولي للكتاب3029743
معرّف المصادر الموحدhttp://hdl.handle.net/10576/54700
الملخصEarly detection of autism spectrum disorder (ASD) is of great significance for early intervention. Besides, knowing the degree of severity in ASD and how it changes with the intervention is imperative for the treatment process. This study proposes Takagi- Sugeno-Kang (TSK) fuzzy modeling approach that is based on subtractive clustering to classify autism spectrum disorder and to estimate the degree of prognosis. The study has been carried out using Electroencephalography (EEG) signal on two groups of control and ASD children age-matched between seven to nine years old. EEG signals are quantized to temporal-time domain using Short Time Frequency Transformation (STFT). Spectrum energy is extracted as features for alpha band. The proposed system is modeled to estimate the degree in which subject is autistic, normal or uncertain. The results show accuracy in range (70-97) % when using fuzzy model .Also this system is modeled to generate crisp decision; the results show accuracy in the range (80-100) %. The proposed model can be adapted to help psychiatrist for diagnosis and intervention process.
اللغةen
الناشرSpringer Nature
الموضوعAutism Spectrum Disorder
Classification
EEG signals
Takagi- Sugeno-Kang fuzzy approach
العنوانFuzzy model for detection and estimation of the degree of autism spectrum disorder
النوعConference Paper
الصفحات372-379
رقم العددPART 4
رقم المجلد7666 LNCS
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة