• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Instability of Langmuir-beam waves: Kappa-distributed electrons

    Thumbnail
    Date
    2023-08-01
    Author
    Lazar, M.
    López, R. A.
    Poedts, S.
    Shaaban, S. M.
    Metadata
    Show full item record
    Abstract
    In space plasmas, electron populations exhibit non-equilibrium velocity distributions with high-energy tails that are reproduced by the Kappa power-laws and contrast with the Maxwellian distributions often used in theoretical and numerical analyses. In this work, we investigate typical electron beam-plasma systems and show the influence of Kappa tails on the linear dispersion and stability spectra of Langmuir-beam waves. The most common scenarios invoke instabilities of Langmuir waves at the origin of radio emissions in solar flares and interplanetary shocks. However, the parametric domain of these instabilities is narrow (i.e., energetic beams but with very low density, n b / n e ≲ 10 − 3 ), making their analytical and numerical characterization not straightforward, while the approximations used may lead to inconclusive results. Here, we provide exact numerical solutions of the Langmuir-beam mode, which distinguish from the classical ones (unaffected by the beam), and also from electron beam modes destabilized by more energetic and/or denser beams. Langmuir-beam solutions are only slightly modified by the Kappa distribution of the beam component, due to its very low density. However, if the main (core) population is Kappa distributed, the instability of the Langmuir-beam mode is strongly inhibited, if not suppressed. New analytical solutions are derived taking into account the more or less resonant involvement of the electron core and beam populations. As a result, the analytical solutions show an improved match with the exact solutions, making them applicable in advanced modeling of weak (weakly nonlinear) turbulence.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85168237481&origin=inward
    DOI/handle
    http://dx.doi.org/10.1063/5.0159486
    http://hdl.handle.net/10576/55857
    Collections
    • Mathematics, Statistics & Physics [‎804‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video