• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Face Anti-Spoofing Detection Using Structure-Texture Decomposition

    View/Open
    Face_Anti-Spoofing_Detection_Using_Structure-Texture_Decomposition.pdf (2.174Mb)
    Date
    2023-10
    Author
    Douglas, Dareen
    Ben Hassen, Nada
    Aslam, Asmaa
    Elharrouss, Omar
    Al-Maadeed, Somaya
    Metadata
    Show full item record
    Abstract
    A key area in computer vision and biometric authentication systems is detecting and classifying face anti-spoofing. The novel method for face anti-spoofing presented in this paper focuses on color invariant methods. The proposed approach consists to compare two different feature extraction methods: LBP and HOG, used with two different machine-learning models such as KNN and SVM. The suggested method improves the system's ability to discriminate by utilizing color properties and overcoming obstacles like varying lighting and image quality. The structure-texture decomposition is used as a feature that is used to improve the performance of the face anti-spoofing methods. After the experimental results using different techniques, we noticed that structure-texture decomposition can be a good feature for face anti-spoofing detection features.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85179850254&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ISNCC58260.2023.10323852
    http://hdl.handle.net/10576/55868
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video