• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-scale-based Network for Image Dehazing

    عرض / فتح
    Multi-scale-based_Network_for_Image_Dehazing.pdf (4.524Mb)
    التاريخ
    2023-10
    المؤلف
    Araji, Chaza
    Zahra, Ayaa
    Alinsari, Leen
    Al-Aloosi, Maryam
    Elharrouss, Omar
    Al-Maadeed, Sumaya
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Image and video dehazing is a difficult subject that has received a lot of attention in the field of computer vision. The presence of air haze in photos and movies can reduce visual quality dramatically, resulting in a loss of contrast, color accuracy, and sharpness. To address this issue, in this paper, we propose a deep-learning-based method for image dehazing. The proposed network consists of using multi-scale representation at every VGG-16 block to conserve the high quality of the image during the learning process. The collaboration of convolutional layers and the multi-scale block make the network learn from different scales combined with the outputs of the previous layers of the networks. This can conserve the high quality as well as remove the haze. The proposed method is trained and tested on four datasets including BESIDE, DENSE, O-HAze, and I-HAZE, and hives promising results compared to some of the state-of-the-art methods.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85179849664&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ISNCC58260.2023.10323633
    http://hdl.handle.net/10576/55891
    المجموعات
    • علوم وهندسة الحاسب [‎2482‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video