• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Encoder–Decoder-Based Method for Segmentation of COVID-19 Lung Infection in CT Images

    عرض / فتح
    s42979-021-00874-4.pdf (2.034Mb)
    التاريخ
    2021-10-25
    المؤلف
    Elharrouss, Omar
    Subramanian, Nandhini
    Al-Maadeed, Somaya
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The novelty of the COVID-19 Disease and the speed of spread, created colossal chaotic, impulse all the worldwide researchers to exploit all resources and capabilities to understand and analyze characteristics of the coronavirus in terms of spread ways and virus incubation time. For that, the existing medical features such as CT-scan and X-ray images are used. For example, CT-scan images can be used for the detection of lung infection. However, the quality of these images and infection characteristics limit the effectiveness of these features. Using artificial intelligence (AI) tools and computer vision algorithms, the accuracy of detection can be more accurate and can help to overcome these issues. In this paper, we propose a multi-task deep-learning-based method for lung infection segmentation on CT-scan images. Our proposed method starts by segmenting the lung regions that may be infected. Then, segmenting the infections in these regions. In addition, to perform a multi-class segmentation the proposed model is trained using the two-stream inputs. The multi-task learning used in this paper allows us to overcome the shortage of labeled data. In addition, the multi-input stream allows the model to learn from many features that can improve the results. To evaluate the proposed method, many metrics have been used including Sorensen–Dice similarity, Sensitivity, Specificity, Precision, and MAE metrics. As a result of experiments, the proposed method can segment lung infections with high performance even with the shortage of data and labeled images. In addition, comparing with the state-of-the-art method our method achieves good performance results. For example, the proposed method reached 78.6% for Dice, 71.1% for Sensitivity metric, 99.3% for Specificity 85.6% for Precision, and 0.062 for Mean Average Error metric, which demonstrates the effectiveness of the proposed method for lung infection segmentation.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85161474740&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s42979-021-00874-4
    http://hdl.handle.net/10576/55893
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]
    • أبحاث فيروس كورونا المستجد (كوفيد-19) [‎849‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video