• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermoeconomic Analysis of a Solar-Assisted Industrial Process Heating System

    Thumbnail
    View/Open
    International Journal of Energy Research - 2024 - Kumar - Thermoeconomic Analysis of a Solar‐Assisted Industrial Process.pdf (3.005Mb)
    Date
    2024
    Author
    Kumar, Laveet
    Hasanuzzaman, M.
    Rahim, N. A.
    Sleiti, Ahmad K.
    Metadata
    Show full item record
    Abstract
    Thermal energy in the industrial sector for process heating applications in the range of 50 to 250°C consumes about 35% of the global fossil fuel. Cascaded solar thermal systems are promising solutions to meet clean and uninterrupted thermal energy supply for industrial process heating. Well-engineered cascaded arrangement of solar thermal collector (STC) and photovoltaic thermal (PVT) collector can attain an average solar fraction of more than 50%. In the present research, a solar-assisted process heating system, wherein a STC integrated in series with PVT, has been designed to produce low- to medium-temperature heat at higher solar fractions. Herein, thermal performance and economic viability of this novel system have been investigated and analyzed methodically. In the present research, a comprehensive TRNSYS simulation model is developed and validated experimentally. Results show that PVT integrated with heat pipe evacuated tube collector (PVT-HPETC) and PVT integrated with flat plate collector (PVT-FPC) system can generate thermal energy as high as 1625 and 1420 W with a thermal efficiency of 81 and 77% and exergy efficiency of 13.22 and 12.72%. Levelized cost of heat (LCOH) for PVT-HPETC at process heat temperatures of 60, 70, and 80°C is 0.214, 0.208, and 0.201 MYR/kWh, respectively. It is worth to note that LCOH is less than the existing cost of heat generation which proves that these systems are economically feasible.
    DOI/handle
    http://dx.doi.org/10.1155/2024/4614066
    http://hdl.handle.net/10576/56201
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Optimal design and operation of conventional, solar electric, and solar thermal district cooling systems 

      Alghool, Dana M.; ElMekkawy, Tarek Y.; Haouari, Mohamed; Elomri, Adel ( John Wiley and Sons Ltd , 2022 , Article)
      This research investigates the integration of solar energy with traditional cooling technologies using solar electric cooling systems. A holistic optimization process is introduced to enable the cost-effective design of ...
    • Thumbnail

      Effect of fin configuration parameters on performance of solar still: A review 

      Mevada, D.; Panchal, H.; Sadasivuni, Kishor Kumar; Israr, M.; Suresh, M.; Dharaskar, S.; Thakkar, H.... more authors ... less authors ( Elsevier B.V. , 2020 , Article)
      Drinking water is a necessity not only for humanity but also for the all living organisms available in the earth today. But the availability of the potable water is not in abundant amount; hence clean water is scarce in ...
    • Thumbnail

      PbS/CdS heterojunction quantum dot solar cells 

      Dagher, Sawsan; Haik, Yousef; Tit, Nacir; Ayesh, Ahmad ( Springer New York LLC , 2016 , Article)
      The present work investigates the effects of combination of lead sulfide PbS quantum dots and cadmium sulfide CdS nanoparticles (NPs), with n-type and p-type semiconductors, on the photovoltaic performance of heterojunction ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video