• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance analysis of various machine learning algorithms for CO2 leak prediction and characterization in geo-sequestration injection wells

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S0957582024000090-main.pdf (6.152Mb)
    التاريخ
    2024
    المؤلف
    Harati, Saeed
    Rezaei Gomari, Sina
    Rahman, Mohammad Azizur
    Hassan, Rashid
    Hassan, Ibrahim
    Sleiti, Ahmad K.
    Hamilton, Matthew
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The effective detection and prevention of CO2 leakage in active injection wells are paramount for safe carbon capture and storage (CCS) initiatives. This study assesses five fundamental machine learning algorithms, namely, Support Vector Regression (SVR), K-Nearest Neighbor Regression (KNNR), Decision Tree Regression (DTR), Random Forest Regression (RFR), and Artificial Neural Network (ANN), for use in developing a robust data-driven model to predict potential CO2 leakage incidents in injection wells. Leveraging wellhead and bottom-hole pressure and temperature data, the models aim to simultaneously predict the location and size of leaks. A representative dataset simulating various leak scenarios in a saline aquifer reservoir was utilized. The findings reveal crucial insights into the relationships between the variables considered and leakage characteristics. With its positive linear correlation with depth of leak, wellhead pressure could be a pivotal indicator of leak location, while the negative linear relationship with well bottom-hole pressure demonstrated the strongest association with leak size. Among the predictive models examined, the highest prediction accuracy was achieved by the KNNR model for both leak localization and sizing. This model displayed exceptional sensitivity to leak size, and was able to identify leak magnitudes representing as little as 0.0158% of the total main flow with relatively high levels of accuracy. Nonetheless, the study underscored that accurate leak sizing posed a greater challenge for the models compared to leak localization. Overall, the findings obtained can provide valuable insights into the development of efficient data-driven well-bore leak detection systems.
    DOI/handle
    http://dx.doi.org/10.1016/j.psep.2024.01.007
    http://hdl.handle.net/10576/56205
    المجموعات
    • الهندسة الميكانيكية والصناعية [‎1496‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video