• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On Neuroevolution of Multi-Input Compositional Pattern Producing Networks: A Case of Entertainment Computing, Edge Devices, and Smart Cities

    View/Open
    3628430.pdf (628.6Kb)
    Date
    2023-10-23
    Author
    ullah, Obaid
    Khan, Habib Ullah
    Halim, Zahid
    Anwar, Sajid
    Waqas, Muhammad
    Metadata
    Show full item record
    Abstract
    This work presents a novel approach by utilizing Heterogeneous Activation Neural Networks (HA-NNs) to evolve the weights of Artificial Neural Networks (ANNs) for reinforcement learning in console and arcade computer games like Atari's Breakout and Sonic the Hedgehog. It is the first study to explore the potential of HA-NNs as potent ANNs in solving gaming-related reinforcement learning problems. Additionally, the proposed solution optimizes data transmission over networks for edge devices, marking a novel application of HA-NNs. The study achieved outstanding results, outperforming recent works in benchmark environments like CartPole-v1, Lunar Lander Continuous, and MountainCar-Continuous, with HA-NNs and ANNs evolved using the Neuroevolution of Augmenting Topologies (NEAT) algorithm. Notably, the key advancements include exceptional scores of 500 in CartPole-v1 and 98.2 in Mountain Car Continuous, demonstrating the efficacy of HA-NNs in reinforcement learning tasks. Beyond gaming, the research addresses the challenge of efficient data communication between edge devices, which has the potential to enhance performance in smart cities while reducing the load on edge devices and supporting seamless entertainment experiences with minimal commuting. This work pioneers the application of HA-NNs in reinforcement learning for computer games and introduces a novel approach for optimizing edge device communication, promising significant advancements in the fields of AI, neural networks, and smart city technologies.
    DOI/handle
    http://dx.doi.org/10.1145/3628430
    http://hdl.handle.net/10576/56218
    Collections
    • Accounting & Information Systems [‎555‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video