• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Rapid sensing-based emergency detection: A sequential approach

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    El Khatib, Rawan F.
    Zorba, Nizar
    Hassanein, Hossam S.
    Metadata
    Show full item record
    Abstract
    The upsurge of smart devices has enabled the realization of safe, efficient smart cities that improve the quality of life of their citizens. A prevalent class of smart city services that are attracting increasing attention are Smart Emergency Response and Management (SERM) systems, where sensing paradigms such as crowd sensing and IoT-centric sensing are employed to facilitate the detection of, and response to a crisis situation. In this paper, we study the detection of an abnormal change in a monitored variable through crowd sensed and heterogeneous data, where the change is suggestive of an emergency situation. We formulate our problem as a sequential change-point detection problem, where the underlying distribution of the variable changes at an unknown time. We aim to detect the change-point with minimal delay, subject to a false alarm constraint. We utilize Shiryaev's test to construct two variants of the solution depending on the structure of the received data contributions and mobility of participating sensing elements. We conduct simulations experiments to show the performance of these variants in terms of the delay-false alarm trade-off in different scenarios.
    DOI/handle
    http://dx.doi.org/10.1016/j.comcom.2020.04.060
    http://hdl.handle.net/10576/56593
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video