• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reinforcement Learning-Based E-Scooter Energy Minimization Using Optimized Speed-Route Selection

    Thumbnail
    View/Open
    Reinforcement_Learning-Based_E-Scooter_Energy_Minimization_Using_Optimized_Speed-Route_Selection.pdf (3.433Mb)
    Date
    2024
    Author
    Aboeleneen, Karim
    Zorba, Nizar
    Massoud, Ahmed M.
    Metadata
    Show full item record
    Abstract
    In the evolving urban transportation, the emergence of Micro-Mobility (MM), symbolized by Electric Scooters (ESs), has become a pivotal response to private automobiles' environmental and logistical challenges. However, the limited battery capacity of ESs presents a challenge in realizing their full potential. This paper addresses the problem of optimizing energy consumption in ESs by jointly considering path and speed selection all while considering user dissatisfaction levels. Our approach considers two types of ESs, one with regenerative braking (i.e., able to recharge the battery from kinetic energy of movement) and the other without regenerative braking. In order to build a realistic environment, we considered dynamic factors such as time-varying road congestion, road conditions, and ambient temperature. We considered a comprehensive energy consumption model for the ES that includes parameters such as rolling resistance, air friction, road gradient, auxiliary power and ambient temperature influence. Moreover, we introduced a user dissatisfaction model that accounts for traffic conditions, congestion, and ambient temperature to enhance the user experience. The optimization problem was then formulated and solved with Deep Reinforcement Learning (DRL-DQN) approach considering the time-varying environment, road-specific parameters (i.e., road angle, road shading, road speed limit, and road condition), and user dissatisfaction levels. The DRL approach was designed to make timely and context-aware decisions the minimize the energy consumption of the ES. Rigorous validation and comprehensive testing demonstrate the effectiveness of our approach. We evaluated the proposed solution's performance against alternative methodologies used by fleet operators in different tests, including energy consumption, average user dissatisfaction, and average trip duration. The results showed that the proposed approach saved nearly 53-67% of energy for regenerative braking cases and 25-55% for non-regenerative braking cases when compared with other approaches and offers high adaptability to the environment and less complexity when compared with the exhaustive solution.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2024.3395286
    http://hdl.handle.net/10576/56598
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video