• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quality Estimation for Scarce Scenarios within Mobile Crowdsensing Systems

    Thumbnail
    Date
    2020
    Author
    Azmy, Sherif B.
    Zorba, Nizar
    Hassanein, Hossam S.
    Metadata
    Show full item record
    Abstract
    Mobile crowdsensing (MCS) is a paradigm that exploits the presence of a crowd of moving human participants to acquire, or generate, data from their environment. As a part of the Internet-of-Things (IoT) paradigm, MCS serves the quest for a more efficient operation of a smart city. Big data techniques employed on this data produce inferences about the participants' environment, the smart city. However, sufficient amounts of data are not always available. Sometimes, the available data are scarce as it is obtained at different times, locations, and from different MCS participants who may not be present. As a consequence, the scale of data acquired may be small and susceptible to errors. In such scenarios, the MCS system requires techniques that acquire reliable inferences from such limited data sets. To that end, we resort to small data (SD) techniques that are relevant for scarce and erroneous scenarios. In this article, we discuss SD and propose schemes to tackle the problems associated with such limited data sets, in the context of the smart city. We propose two novel quality metrics: 1) MAD quality metric (MAD-Q) and 2) MAD bootstrap quality metric (MADBS-Q), to deal with SD, focusing on evaluating the quality of a data set within MCS. We also propose an MCS-specific coverage metric that combines the spatial dimension with MAD-Q and MADBS-Q. We show the performance of all the presented techniques through closed-form mathematical expressions, with which simulation results were found to be consistent.
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2020.2994556
    http://hdl.handle.net/10576/56614
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video