• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting emergency department utilization among children with asthma using deep learning models

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2772442522000181-main.pdf (1.194Mb)
    التاريخ
    2022
    المؤلف
    AlSaad, Rawan
    Malluhi, Qutaibah
    Janahi, Ibrahim
    Boughorbel, Sabri
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Pediatric asthma is a leading cause of emergency department (ED) utilization, which is expensive and often preventable. Therefore, development of ED utilization predictive models that can accurately predict patients at high-risk of frequent ED use and subsequently steering their treatment pathway towards more personalized interventions, has high clinical utility. In this paper, we investigate the extent to which deep learning models, specifically recurrent neural networks (RNNs), coupled with routinely collected electronic health record (EHR) clinical data can predict the frequency of emergency department utilization among children with asthma. We use retrospective longitudinal EHR data of 87,413 children with asthma aged 0-18 years, who were attributed to one or more healthcare facility for at least 2 consecutive years between 2000-2013. The models were trained for the task of predicting the frequency of emergency department visits in the next 12 months. We compared prediction results of three recurrent neural network (RNN) models: bidirectional long short-term memory (BiLSTM), bidirectional gated recurrent unit (BiGRU), and reverse time attention model (RETAIN), to a baseline multinomial logistic regression model. We assessed the predictive accuracy of the models using receiver operating characteristic curve (AUC-ROC), precision-recall curve (AUC-PR), and F1-score. The results indicated that all RNN models have similar performances reaching AUC-ROC: 0.85, AUC-PR: 0.74, and F1-score: 0.61, compared to AUC-ROC: 0.81, AUC-PR: 0.69, and F1-score: 0.56 for a baseline multinomial logistic regression. Predictive models created from large routinely available EHR data using RNN models can accurately identify children with asthma at high-risk of repeated ED visits, without interacting with the patient or collecting information beyond the patient's EHR.
    DOI/handle
    http://dx.doi.org/10.1016/j.health.2022.100050
    http://hdl.handle.net/10576/56737
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video