Show simple item record

AuthorTorquato, Felipe
AuthorBouwmeester, Jessica
AuthorRange, Pedro
AuthorMarshell, Alyssa
AuthorPriest, Mark A.
AuthorBurt, John A.
AuthorMøller, Peter R.
AuthorBen-Hamadou, Radhouan
Available date2024-07-18T10:16:55Z
Publication Date2022-06-01
Publication NameCoral Reefs
Identifierhttp://dx.doi.org/10.1007/s00338-021-02158-y
CitationTorquato, F., Bouwmeester, J., Range, P., Marshell, A., Priest, M. A., Burt, J. A., ... & Ben-Hamadou, R. (2022). Population genetic structure of a major reef-building coral species Acropora downingi in northeastern Arabian Peninsula. Coral Reefs, 41(3), 743-752.‏
ISSN07224028
URIhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85111795640&origin=inward
URIhttp://hdl.handle.net/10576/56819
AbstractCurrent seawater temperatures around the northeastern Arabian Peninsula resemble future global forecasts as temperatures > 35 °C are commonly observed in summer. To provide a more fundamental aim of understanding the structure of wild populations in extreme environmental conditions, we conducted a population genetic study of a widespread, regional endemic table coral species, Acropora downingi, across the northeastern Arabian Peninsula. A total of 63 samples were collected in the southern Arabian/Persian Gulf (Abu Dhabi and Qatar) and the Sea of Oman (northeastern Oman). Using RAD-seq techniques, we described the population structure of A. downingi across the study area. Pairwise G’st and distance-based analyses using neutral markers displayed two distinct genetic clusters: one represented by Arabian/Persian Gulf individuals, and the other by Sea of Oman individuals. Nevertheless, a model-based method applied to the genetic data suggested a panmictic population encompassing both seas. Hypotheses to explain the distinctiveness of phylogeographic subregions in the northeastern Arabian Peninsula rely on either (1) bottleneck events due to successive mass coral bleaching, (2) recent founder effect, (3) ecological speciation due to the large spatial gradients in physical conditions, or (4) the combination of seascape features, ocean circulation and larval traits. Neutral markers indicated a slightly structured population of A. downingi, which exclude the ecological speciation hypothesis. Future studies across a broader range of organisms are required to furnish evidence for existing hypotheses explaining a population structure observed in the study area. Though this is the most thermally tolerant acroporid species worldwide, A. downingi corals in the Arabian/Persian Gulf have undergone major mortality events over the past three decades. Therefore, the present genetic study has important implications for understanding patterns and processes of differentiation in this group, whose populations may be pushed to extinction as the Arabian/Persian Gulf warms.
Languageen
PublisherSpringer Science and Business Media Deutschland GmbH
SubjectArabian/Persian Gulf
Climate change
Global warming
Phylogeography
RAD-seq
Sea of Oman
TitlePopulation genetic structure of a major reef-building coral species Acropora downingi in northeastern Arabian Peninsula
TypeArticle
Pagination743-752
Issue Number3
Volume Number41


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record