• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Preserving the beamforming effect for spatial cue-based pseudo-binaural dereverberation of a single source

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    reserving the beamforming effect for spatial cue-based.pdf (1.852Mb)
    التاريخ
    2023-01-01
    المؤلف
    Gul, Sania
    Khan, Muhammad Salman
    Shah, Syed Waqar
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Reverberations are unavoidable in enclosures, resulting in reduced intelligibility for hearing impaired and non-native listeners and even for the normal hearing listeners in noisy circumstances. It also degrades the performance of machine listening applications. In this paper, we propose a novel approach of binaural dereverberation of a single speech source, using the differences in the interaural cues of the direct path signal and the reverberations. Two beamformers, spaced at an interaural distance, are used to extract the reverberations from the reverberant speech. The interaural cues generated by these reverberations and those generated by the direct path signal act as a two-class dataset, used for the training of U-Net (a deep convolutional neural network). After its training, the beamformers are removed and the trained U-Net along with the maximum likelihood estimation (MLE) algorithm is used to discriminate between the direct path cues from the reverberation cues, when the system is exposed to the interaural spectrogram of the reverberant speech signal. Our proposed model has outperformed the classical signal processing dereverberation model ‘weighted prediction error’ in terms of cepstral distance (CEP), frequency weighted segmental signal to noise ratio (fwsegSNR) and signal-to-reverberation modulation energy ratio (SRMR) by 1.4 points, 8 dB and 0.6 dB. It has achieved better performance than the deep learning based dereverberation model by gaining 1.3 points improvement in CEP with comparable fwsegSNR, using training dataset which is almost 8 times smaller than required for that model. The proposed model also sustained its performance under relatively similar unseen acoustic conditions and at positions in the vicinity of its training position.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85136731614&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.csl.2022.101445
    http://hdl.handle.net/10576/57119
    المجموعات
    • الهندسة الكهربائية [‎2821‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video