Nanofluid in tilted cavity with partially heated walls
View/ Open
Publisher version (Check access options)
Check access options
Date
2014-10-01Metadata
Show full item recordAbstract
Lattice Boltzmann Method is applied to investigate the natural convection flow utilizing nanofluids in square enclosure with partially heated walls. The fluid in the cavity is a water-based nanofluid containing different types of nanoparticles: copper (Cu), silver (Ag), alumina (Al2O3) and titania (TiO2). The effective thermal conductivity and viscosity of nanofluid are calculated by the Maxwell–Garnetts (MG) and Brinkman models, respectively. This investigation was compared with other numerical methods and found to be in excellent agreement. Numerical results for the flow and heat transfer characteristics are obtained for various values of the nanoparticle volume fraction, Rayleigh numbers and inclination angles together with different kinds of nanofluids. The type of nanofluid is a key factor for heat transfer enhancement. Choosing copper as the nanoparticle proved to have the highest cooling performance for this problem. It is also shown that the Nusselt number is an increasing function of each of the nanoparticle volume fraction and Rayleigh numbers.
Collections
- Mathematics, Statistics & Physics [740 items ]