عرض بسيط للتسجيلة

المؤلفFarzan, Farbod
المؤلفGharieh, Kaveh
المؤلفJafari, Mohsen A.
المؤلفAl-Khalifa, Khalifa Nasser M.N.
المؤلفGang, Tao
تاريخ الإتاحة2024-08-01T10:39:10Z
تاريخ النشر2014
اسم المنشور21st World Congress on Intelligent Transport Systems, ITSWC 2014: Reinventing Transportation in Our Connected World
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.13140/2.1.3207.5848
معرّف المصادر الموحدhttp://hdl.handle.net/10576/57380
الملخصDriver error is the leading cause of vehicle crashes; roadway segment characteristics and environmental conditions follow. However, no safety prediction model has been introduced to estimate risk associated with driver behavior, roadway segment, and environmental conditions. In this research, a probabilistic risk-based model for each individual driver with respect to driver demographic (age and gender), behavior, roadway characteristics, and weather condition is introduced. In the proposed model, the driver is placed in either no-crash, near-crash or crash categories for a given time stamp. Multinomial Logistic Regression (MLR) approach is used for estimating the risk (odds ratios) using crash and near-crash data, as well as normal driving data. The 100-car naturalistic driving study data sets are used to develop the model. The developed method demonstrates reliable performance in detection of outcome category.
اللغةen
الناشرIntelligent Transport Systems (ITS)
الموضوعMultinomial Logistic Regression (MLR)
Naturalistic driver behavior
Risk based analysis
العنوانDevelopment of a risk assessment tool based on driver behavior and environment
النوعConference Paper
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة