• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluating the role of dissolved silica for dolomite formation in evaporitic environments: Insights from prolonged laboratory experiments

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0048969724048630-main.pdf (4.497Mb)
    Date
    2024
    Author
    Al Disi, Zulfa Ali
    Bontognali, Tomaso R.R.
    Sadooni, Fadhil
    Al-Kuwari, Hamad Al Saad
    Metadata
    Show full item record
    Abstract
    The mineral Dolomite CaMg(CO3)2 is a common constituent of sedimentary rocks. Despite centuries of research, the mechanism of its formation remains elusive and debated. Recent studies have shown the presence of silica in solution promote the incorporation of Mg into the carbonate mineral, forming crystal phases that may be precursors to dolomite. The goal of this study was to evaluate with laboratory experiments whether dissolved silica may play a role for dolomite formation in sabkha (i.e., salt flats) environments. Several models for dolomite formation are based on the studies of sabkhas, which are often cited as modern analogue for ancient dolomite-rich sedimentary sequences. We performed long-incubation time (i.e., up to 600 days) laboratory precipitation experiments at 30 °C with solution mimicking the sabkha pore waters (characterized by a salinity of 23 % and Mg: Ca ratio of 15) to which we added different concentrations of Si. Our results revealed a positive correlation (p-value <0.001) between Si concentration in solution and the mol% Mg of the carbonate minerals forming in the experiment. With 2 mM of Si, the bulk precipitate was comprised of 90 % stoichiometric dolomite with possible signs or ordering. Moreover, the rhombohedral morphology of the crystals is analogue to that of natural dolomite previously described from sabkha sediments. Our results suggest that dissolved Si may play an important role for dolomite formation in evaporitic environments.
    DOI/handle
    http://dx.doi.org/10.1016/j.scitotenv.2024.174714
    http://hdl.handle.net/10576/57422
    Collections
    • Earth Science Cluster [‎216‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video