• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-time statistical modelling of data generated from self-sensing bridges

    Thumbnail
    View/Open
    din-houn-lau-et-al-2018-real-time-statistical-modelling-of-data-generated-from-self-sensing-bridges.pdf (1.702Mb)
    Date
    2018
    Author
    Din-Houn Lau, F
    Butler, Liam J
    Adams, Niall M
    Elshafie, Mohammed Z E B
    Girolami, Mark A
    Metadata
    Show full item record
    Abstract
    Instrumentation of infrastructure is changing the way engineers design, construct, monitor and maintain structures such as roads, bridges and underground structures. Data gathered from these instruments have changed the handson assessment of infrastructure behaviour to include data processing and statistical analysis procedures. Engineers wish to understand the behaviour of the infrastructure and detect changes - for example, degradation - but are now using high-frequency data acquired from a sensor network. Presented in this paper is a case study that models and analyses in real time the dynamic strain data gathered from a railway bridge which has been instrumented with fibre-optic sensor networks. The high frequency of the data combined with the large number of sensors requires methods that efficiently analyse the data. First, automated methods are developed to extract train passage events from the background signal and underlying trends due to environmental effects. Second, a streaming statistical model which can be updated efficiently is introduced that predicts strain measurements forward in time. This tool is enhanced to provide anomaly detection capabilities in individual sensors and the entire sensor network. These methods allow for the practical processing and analysis of large data sets. The implementation of these contributions will be essential for demonstrating the value of self-sensing structures.
    DOI/handle
    http://dx.doi.org/10.1680/jsmic.17.00023
    http://hdl.handle.net/10576/57451
    Collections
    • Civil and Environmental Engineering [‎861‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video