• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Shear behaviour of one-way high strength plain and FRC slabs reinforced with basalt FRP bars

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0263822322009667-main.pdf (9.384Mb)
    Date
    2022
    Author
    Al-Hamrani, Abathar
    Alnahhal, Wael
    Metadata
    Show full item record
    Abstract
    The purpose of this study is to investigate the shear behavior of high-strength one-way plain and basalt fiber reinforced concrete (BFRC) slabs reinforced with basalt fiber reinforced polymers (BFRP) bars. A total of 8 slabs having 2550 mm length, 600 mm width and 150 mm height were tested under four-point loading until failure. The main test variable was the BFRP longitudinal reinforcement ratio with two ratios of 0.792 % and 1.27 %. Also, two slabs were cast with basalt macro fibers (BMF) at a volume fraction (Vf) of 0.75 % to explore the effect of the added fibers on the shear capacity of the tested one-way slabs. Following the experimental testing, the shear capacities of the BFRC-BFRP one-way slabs were evaluated analytically using two approaches. The first approach considers the individual contribution of concrete and BMF to shear strength, while the second takes into account a direct alteration to the concrete contribution owing to the addition of BMF. The experimental results showed that the shear capacity was enhanced by 25 % to 29 % when the reinforcement ratio was increased from 0.792 % to 1.27 %. In addition, the shear capacity of the slab containing 0.75 % of BMF was notably enhanced over the plain concrete slab, however, this enhancement was less notable when a higher reinforcement ratio was used. Based on the analytical investigation, a new model that accounts for the individual contribution of concrete and the BMF is proposed. The model has accurately and conservatively predicted the experimental data with a mean experimental to predicted shear capacity of 1.10 and a coefficient of variation of 7.95 %.
    DOI/handle
    http://dx.doi.org/10.1016/j.compstruct.2022.116234
    http://hdl.handle.net/10576/57506
    Collections
    • Civil and Environmental Engineering [‎863‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video