• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Audio-visual feature fusion for speaker identification

    Thumbnail
    Date
    2012
    Author
    Almaadeed, Noor
    Aggoun, Amar
    Amira, Abbes
    Metadata
    Show full item record
    Abstract
    Analyses of facial and audio features have been considered separately in conventional speaker identification systems. Herein, we propose a robust algorithm for text-independent speaker identification based on a decision-level and feature-level fusion of facial and audio features. The suggested approach makes use of Mel-frequency Cepstral Coefficients (MFCCs) for audio signal processing, Viola-Jones Haar cascade algorithm for face detection from video, eigenface features (EFF) and Gaussian Mixture Models (GMMs) for feature-level and decision-level fusion of audio and video. Decision-level fusion is carried out using PCA for face and GMM for audio through AND voting. Feature-level fusion is investigated by combining both MFCC (audio) and PCA (face) features to construct a hybrid GMM for each speaker. Testing on GRID, a multi-speaker audio-visual database, shows that the decision-level fusion of PCA (face) and GMM (audio) achieves 98.2 % accuracy and it is almost 15 % more efficient than feature-level fusion.
    DOI/handle
    http://dx.doi.org/10.1007/978-3-642-34475-6_8
    http://hdl.handle.net/10576/57541
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video