• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design of optimal deep learning based human activity recognition on sensor enabled internet of things environment

    Thumbnail
    عرض / فتح
    Design_of_Optimal_Deep_Learning_Based_Human_Activity_Recognition_on_Sensor_Enabled_Internet_of_Things_Environment.pdf (4.261Mb)
    التاريخ
    2021
    المؤلف
    Al-Wesabi, Fahd N.
    Albraikan, Amani Abdulrahman
    Hilal, Anwer Mustafa
    Al-Shargabi, Asma Abdulghani
    Alhazbi, Saleh
    Al Duhayyim, Mesfer
    Rizwanullah, Mohammed
    Hamza, Manar Ahmed
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In recent times, Human Activity Recognition (HAR) has become a major challenge to overcome among computer vision applications in day-To-day lives. HAR is mainly envisioned to be utilized in coordination with other technologies namely, Internet of Things (IoT) and sensor technologies. Due to the advancements made in Deep Learning (DL) approaches, the automated high level feature extraction process can be utilized to improve the outcomes of HAR process. In addition, DL techniques can also be employed in different domains of sensor-enabled HAR. In this aspect, the current study designs an Optimal DL-based HAR (ODL-HAR) model on sensor-enabled IoT environments. The proposed ODL-HAR technique aims at determining the human activities in day-To-day lives using wearables and IoT devices. ODL-HAR technique involves different stages of operations namely, data acquisition, data preprocessing, feature extraction, classification, and parameter optimization. The proposed ODL-HAR technique uses MobileNet-v2 model as a feature extractor and Bidirectional Long Short-Term Memory (BiLSTM) model as a classifier. In order to fine tune the hyperparameters involved in BiLSTM model optimally, Chaos Game Optimization (CGO) algorithm is employed which in turn increases the recognition performance. The novelty of the work lies in the deployment of CGO algorithm for hyperparameter optimization of HAR. A wide range of simulations was conducted to validate the supremacy of the proposed ODL-HAR technique and two benchmark datasets were used for this simulation process. The experimental results portrayed the enhanced performance of ODL-HAR technique over other recent HAR approaches under different evaluation parameters.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3112973
    http://hdl.handle.net/10576/57734
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video