عرض بسيط للتسجيلة

المؤلفKhan, Muhammad Asif
المؤلفMenouar, Hamid
المؤلفHamila, Ridha
تاريخ الإتاحة2024-08-21T09:49:58Z
تاريخ النشر2023
اسم المنشورProceedings - IEEE Consumer Communications and Networking Conference, CCNC
المصدرScopus
الرقم المعياري الدولي للكتاب23319860
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/CCNC51644.2023.10059904
معرّف المصادر الموحدhttp://hdl.handle.net/10576/57848
الملخصVideo surveillance using drones is both convenient and efficient due to the ease of deployment and unobstructed movement of drones in many scenarios. An interesting application of drone-based video surveillance is to estimate crowd density (both pedestrians and vehicles) in public places. Deep learning using convolution neural networks (CNNs) is employed for automatic crowd counting and density estimation using images and videos. However, the performance and accuracy of such models typically depends upon the model architecture i.e., deeper CNN models improve accuracy at the cost of increased inference time. In this paper, we propose a novel crowd density estimation model for drones (DroneNet) using Self-organized Operational Neural Networks (Self-ONN). Self-ONN provides efficient learning capabilities with lower computational complexity as compared to CNN-based models. We tested our algorithm on two drone-view public datasets. Our evaluation shows that the proposed DroneNet shows superior performance on an equivalent CNN-based model.
راعي المشروعThis publication was made possible by the PDRA award PDRA7-0606-21012 from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرIEEE
الموضوعCNN
crowd counting
density estimation
drones
self-ONNs
العنوانDroneNet: Crowd Density Estimation using Self-ONNs for Drones
النوعConference Paper
الصفحات455-460
رقم المجلد2023-January
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة