• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Combine iron Chelation therapy ameliorates decline of iron on iron loaded Zebrafish embryo

    Thumbnail
    Date
    2017-03-27
    Author
    Ibrahim, Mustafa
    Younes, Nadin Nagy
    Baji, Missbah Hanif
    Shraim, Amjad Mahmoud Ahmad
    Nasrellah, Gheyath
    Metadata
    Show full item record
    Abstract
    Thalassemia is the most common genetically inherited blood disorder in the world arisen from defect in hemoglobin production, resulting in ineffective erythropoiesis and rapid destruction of RBC in the periphery that leads to severe anemia. While transfusion therapy corrects the anemia, it gives rise to secondary iron overload. Finally, recurrent blood exposure can induce alloimmunization to erythrocytes antigens, leading to difficulty in finding compatible blood. Current iron chelation therapy using Desferal® (DFO) is challenging due to its short vascular half-life, frequency of injections, toxicity and expense. To address these issues new iron chelating agents and improved iron chelation therapy we propose using combination of iron chelators. To test the utility of different chelators, in vivo studies performed on iron loaded zebrafish embryos (100 μM Fe3+; ferric ammonium citrate (FAC); 3dpf -6dpf). Iron chelation studies utilized either single or combinational treatment with Deferiprone (L1) or DFO for 7dpf-10dpf on zebrafish iron loaded model. The efficacy of treatment was assessed by total iron with ICP-MS, clinical chemistry analyzer spectrophotometry and with Perl's iron stain microscopy. Iron treatment alone resulted in a significant increase in total iron, histochemical iron staining, also resulted in an increase in stainable iron. Treatment with iron chelators either L1 or DFO alone demonstrated modestly decreased total iron and iron staining. Importantly, combination therapy (L1+ DFO), resulted in an additive effect in FAC-driven iron levels after 96 hours treatment. As expected, iron chelators (e.g., 100 μM DFO or L1) reduced the level of iron. These studies confirm that cellular iron utilization requires one chelator to have the properties to enter cells, chelate intracellular iron and subsequently that go to another chelator with higher affinity to iron binding. The development of improved combination iron chelation therapy using nigh and low molecular weight biocompatible iron chelators may provide better therapeutic value (less toxic and less frequent administration) in developing nations. These biocompatible iron chelators can improve shelf life of blood products to minimize oxidative damage due to iron-mediated oxidation. Consequent to this, iron mediated pathology to patients diminished resulting in less cost to already strained public health budgets in many poor countries.
    URI
    http://onlinelibrary.wiley.com/doi/10.1111/bjh.14613/full
    DOI/handle
    http://dx.doi.org/10.1111/bjh.14613
    http://hdl.handle.net/10576/5813
    Collections
    • Biomedical Sciences [‎796‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video