• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stochastic optimization of hybrid renewable energy systems using sampling average method

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1364032115008527-main.pdf (1.631Mb)
    Date
    2015
    Author
    Sharafi, Masoud
    ElMekkawy, Tarek Y.
    Metadata
    Show full item record
    Abstract
    The stochastic attribute of renewable energy sources and the variability of energy load is a preeminent barrier to design hybrid renewable energy systems. In this paper, a new methodology is advanced to incorporate the uncertainties associated with RE resources and load in sizing an HRES in the application of buildings with low to high renewable energy ratio (RER). Dynamic multi-objective particle swarm optimization (DMOPSO) algorithm, simulation module, and sampling average technique are used to approximate a Pareto front (PF) for an HRES design through a multi-objective optimization framework. The main aim of design is to simultaneously minimize total net present cost (NPC), maximize renewable energy ratio, and minimize fuel emission while satisfy a desirable level of loss of load probability (LLP). The existing randomness in wind speed, solar irradiation, ambient temperature, and energy load is considered using synthetically data generation and sampling average method. The performance of the model has been examined in a building located in Canada as the case study, in which RER of the building is increased by using renewable energy technologies. The generated PF by the stochastic approach is compared to a deterministic PF using well-known performance metrics. Finally, a sensitivity analysis is carried out where the economic characteristics of the model are varied.
    DOI/handle
    http://dx.doi.org/10.1016/j.rser.2015.08.010
    http://hdl.handle.net/10576/59025
    Collections
    • Mechanical & Industrial Engineering [‎1506‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video