• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Employment of CHAID and CRT decision tree algorithms to develop bid/no-bid decision-making models for contractors

    Thumbnail
    Date
    2022-11-24
    Author
    Gunduz, Murat
    Al-Ajji, Ibrahim
    Metadata
    Show full item record
    Abstract
    Purpose: Bid/no-bid decision is a significant and strategic decision, which must be finalized at an early stage of the bidding process. Such decision-making may have significant impact on the performance of the contractors. Using Chi-square Automatic Interaction Detector (CHAID) and Classification and Regression (CRT) decision tree algorithms, this paper aims to develop bid/no-bid models for design-bid-build projects for contractors. Design/methodology/approach: The models in this study have been developed using CHAID and CRT algorithms. Thirty-four bid/no-bid key factors were collected via extensive research. The bid/no-bid factors were listed based on their importance index as a result of a questionnaire distributed among the construction professionals. These factors were divided into five main risk categories – owner, project, bidding situation, contract and contractor – which were taken as inputs for the models. Split-sample validation was applied for testing and measuring the accuracy of the CHAID and CRT models. Moreover, Spearman's rank correlation and Analysis of Variance (ANOVA) tests were employed to identify the statistical features of the received 169 responses. Findings: The key bid/no-bid factors in construction industry were categorized in five related groups and ranked based on the relative importance index. It was found that the top 6 ranked bid/no-bid factors were (1) current workload, (2) need for work, (3) previous experience with employer; (4) timely payment by the employer; (5) availability of other projects for bidding (6) reputation of employer in the industry. Matrix comparison between all bid/no-bid groups was performed using Spearman's correlation to measure the relationship between each of the two paired groups. It was concluded that all the relationships were positive. Originality/value: Existing bidding models require many inputs and advanced understanding of mathematics and software to run the model. Contractors tend to use easy, fast and available support methods. Excluding a great number of the bid/no-bid factors may affect the final decision. This paper proposes a bid/no-bid decision tree models for contractors of different sizes. It is the first study in the literature, to the best of authors' knowledge, to study bid/no-bid decision with the proposed decision tree algorithm. The proposed models in this study overcome the shortfalls of most previous models such as avoiding the complexity and difficulties of applying the concept. The proposed model will provide the contractors with a bid/no-bid decision based on the input for the defined bid factor groups. The proposed models display the soft spots and hot spots between the independent and dependent variables, which leads to a better decision. The proposed models display the result effectively in visual terms, easy to understand and easy to apply. The proposed models are a form of multiple effect (or variable) analysis which allows the companies to explain, describe, predict or classify an outcome.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85113820623&origin=inward
    DOI/handle
    http://dx.doi.org/10.1108/ECAM-01-2021-0042
    http://hdl.handle.net/10576/59604
    Collections
    • Civil and Environmental Engineering [‎867‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video