• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On the modeling of the annual corrosion rate in main cables of suspension bridges using combined soft computing model and a novel nature-inspired algorithm

    View/Open
    s00521-021-06199-w.pdf (14.22Mb)
    Date
    2021
    Author
    Ben Seghier, Mohamed El Amine
    Corriea, José A. F. O.
    Jafari-Asl, Jafar
    Malekjafarian, Abdollah
    Plevris, Vagelis
    Trung, Nguyen-Thoi
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Suspension bridges are critical components of transport infrastructure around the world. Therefore, their operating conditions should be effectively monitored to ensure their safety and reliability. However, the main cables of suspension bridges inevitably deteriorate over time due to corrosion, as a result of their operational and environmental conditions. Thus, accurate annual corrosion rate predictions are crucial for maintaining reliable structures and optimal maintenance operations. However, the corrosion rate is a chaotic and complex phenomenon with highly nonlinear behavior. This paper proposes a novel predictive model for the estimation of the annual corrosion rate in the main cables of suspension bridges. This is a hybrid model based on the multilayer perceptron (MLP) technique optimized using marine predators algorithm (MPA). In addition, well-known metaheuristic approaches such as the genetic algorithm (GA) and particle swarm algorithm (PSO) are employed to optimize the MLP. In order to implement the proposed model, a comprehensive database composed of 309 sample tests on the annual corrosion rate from all around the world, including various factors related to the surrounding environmental properties, is utilized. In addition, several input combinations are proposed for investigating the trigger factors in modeling the annual corrosion rate. The performance of the proposed models is evaluated using various statistical and graphical criteria. The results of this study demonstrate that the proposed hybrid MLP-MPA model provides stable and accurate predictions, while it transcends the previously developed approaches for solving this problem. The effectiveness of the MLP-MPA model shows that it can be used for further studies on the reliability analysis of the main cables of suspension bridges.
    DOI/handle
    http://dx.doi.org/10.1007/s00521-021-06199-w
    http://hdl.handle.net/10576/59684
    Collections
    • Civil and Environmental Engineering [‎867‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video