• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Crowd density estimation with a block-based density map generation

    Thumbnail
    عرض / فتح
    Crowd_density_estimation_with_a_block-based_density_map_generation.pdf (3.014Mb)
    التاريخ
    2024-01-01
    المؤلف
    Elharrouss, Omar
    Mohammed, Hanadi Hassen
    Al-Maadeed, Somaya
    Abualsaud, Khalid
    Mohamed, Amr
    Khattab, Tamer
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Crowd management is one of the challenging tasks in computer vision especially crowd counting which can be the key solution for many surveillance applications. But the estimation of crowdedness in a scene can be related to many problems that limit the effectiveness of any method, we can cote from the theme the scale variation of the objects, and the similarity between the background and the foreground in some complex scenes, as well as the variation of the degree of crowdecity within the same analyzed data. In this paper, we propose a block-based crowd counting model by collaborating the VGG layer with channel-wise attention modules between each block of layers (Crowd-per-Block). the channel attention is used to distinguish between the background and foreground texture. At the end of the network and to extract the contextual information and capture the change in density distribution we introduced a cascaded-spatial-wise attention module. The proposed method is evaluated on various datasets. The experimental results show that the proposed method works well for fully crowded scenes while it's less accurate for less crowded scenes.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85202351369&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ISCV60512.2024.10620151
    http://hdl.handle.net/10576/60023
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video