عرض بسيط للتسجيلة

المؤلفKasi, Shahrukh Khan
المؤلفHashmi, Umair Sajid
المؤلفEkin, Sabit
المؤلفAbu-Dayya, Adnan
المؤلفImran, Ali
تاريخ الإتاحة2024-10-20T10:43:18Z
تاريخ النشر2023
اسم المنشورIEEE Transactions on Cognitive Communications and Networking
المصدرScopus
الرقم المعياري الدولي للكتاب23327731
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/TCCN.2022.3217785
معرّف المصادر الموحدhttp://hdl.handle.net/10576/60213
الملخصWith highly heterogeneous application requirements, 6G and beyond cellular networks are expected to be demand-driven, elastic, user-centric, and capable of supporting multiple services. A redesign of the one-size-fits-all cellular architecture is needed to support heterogeneous application needs. While several recent works have proposed user-centric cloud radio access network (UCRAN) architectures, these works do not consider the heterogeneity of application requirements or the mobility of users. Even though significant gains in performance have been reported, the inherent rigidity of these methods limits their ability to meet the quality of service (QoS) expected from future cellular networks. This paper addresses this need by proposing an intelligent, demand-driven, elastic UCRAN architecture capable of providing services to a diverse set of use cases including augmented/virtual reality, high-speed rails, industrial robots, E-health, and more applications. The proposed framework leverages deep reinforcement learning to adjust the size of a user-centered virtual cell based on each application's heterogeneous requirements. Furthermore, the proposed architecture is adaptable to varying user demands and mobility while performing multi-objective optimization of key network performance indicators (KPIs). Finally, numerical results are presented to validate the convergence, adaptability, and performance of the proposed approach against meta-heuristics and brute-force methods.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعdeep reinforcement learning
demand-driven
elastic architecture
energy efficiency
spectral efficiency
throughput
User-centric
العنوانD-RAN: A DRL-Based Demand-Driven Elastic User-Centric RAN Optimization for 6G & Beyond
النوعArticle
الصفحات130-145
رقم العدد1
رقم المجلد9
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة