عرض بسيط للتسجيلة

المؤلفUmar Bin Farooq, Muhammad
المؤلفManalastas, Marvin
المؤلفRaza, Waseem
المؤلفZaidi, Syed Muhammad Asad
المؤلفRizwan, Ali
المؤلفAbu-Dayya, Adnan
المؤلفImran, Ali
تاريخ الإتاحة2024-10-20T10:43:19Z
تاريخ النشر2022
اسم المنشورIEEE Transactions on Cognitive Communications and Networking
المصدرScopus
الرقم المعياري الدولي للكتاب23327731
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/TCCN.2022.3152510
معرّف المصادر الموحدhttp://hdl.handle.net/10576/60220
الملخصDensification and multi-band operation means inter-frequency handovers can become a bottleneck for mobile user experience in emerging cellular networks. The challenge is aggravated by the fact that there does not exist a method to optimize key inter-frequency handover parameters namely A5 time-to-trigger, A5-threshold1 and A5-threshold2. This paper presents a first study to analyze and optimize the three A5 parameters for jointly maximizing three key performance indicators that reflect mobile user experience: handover success rate (HOSR), reference signal received power (RSRP), and signal-to-interference-plus-noise-ratio (SINR). As analytical modeling cannot capture the system-level complexity, we exploit a data-driven approach. To minimize the training data generation time, we exploit shapley additive explanations (SHAP) sensitivity analysis. The insights from SHAP analysis allow the selective collection of the training data thereby enabling the easier implementation of the proposed solution in a real network. We show that joint RSRP, SINR and HOSR optimization problem is non-convex and solve it using genetic algorithm (GA). We then propose an intelligent mutation scheme for GA, which makes the solution 5x times faster than the legacy GA and 21x faster than the brute force search. This paper thus presents first solution to implement computationally efficient closed-loop self-optimization of inter-frequency mobility parameters.
راعي المشروعThis work is supported by the National Science Foundation under Grant Numbers 1718956 and Qatar National Research Fund (QNRF) under Grant No. NPRP12-S 0311-190302.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوع5G
6G
Handover Optimization
Machine Learning
Mobility Management
العنوانA Data-Driven Self-Optimization Solution for Inter-Frequency Mobility Parameters in Emerging Networks
النوعArticle
الصفحات570-583
رقم العدد2
رقم المجلد8
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة