Show simple item record

AuthorUmar Bin Farooq, Muhammad
AuthorManalastas, Marvin
AuthorRaza, Waseem
AuthorZaidi, Syed Muhammad Asad
AuthorRizwan, Ali
AuthorAbu-Dayya, Adnan
AuthorImran, Ali
Available date2024-10-20T10:43:19Z
Publication Date2022
Publication NameIEEE Transactions on Cognitive Communications and Networking
ResourceScopus
ISSN23327731
URIhttp://dx.doi.org/10.1109/TCCN.2022.3152510
URIhttp://hdl.handle.net/10576/60220
AbstractDensification and multi-band operation means inter-frequency handovers can become a bottleneck for mobile user experience in emerging cellular networks. The challenge is aggravated by the fact that there does not exist a method to optimize key inter-frequency handover parameters namely A5 time-to-trigger, A5-threshold1 and A5-threshold2. This paper presents a first study to analyze and optimize the three A5 parameters for jointly maximizing three key performance indicators that reflect mobile user experience: handover success rate (HOSR), reference signal received power (RSRP), and signal-to-interference-plus-noise-ratio (SINR). As analytical modeling cannot capture the system-level complexity, we exploit a data-driven approach. To minimize the training data generation time, we exploit shapley additive explanations (SHAP) sensitivity analysis. The insights from SHAP analysis allow the selective collection of the training data thereby enabling the easier implementation of the proposed solution in a real network. We show that joint RSRP, SINR and HOSR optimization problem is non-convex and solve it using genetic algorithm (GA). We then propose an intelligent mutation scheme for GA, which makes the solution 5x times faster than the legacy GA and 21x faster than the brute force search. This paper thus presents first solution to implement computationally efficient closed-loop self-optimization of inter-frequency mobility parameters.
SponsorThis work is supported by the National Science Foundation under Grant Numbers 1718956 and Qatar National Research Fund (QNRF) under Grant No. NPRP12-S 0311-190302.
Languageen
PublisherInstitute of Electrical and Electronics Engineers Inc.
Subject5G
6G
Handover Optimization
Machine Learning
Mobility Management
TitleA Data-Driven Self-Optimization Solution for Inter-Frequency Mobility Parameters in Emerging Networks
TypeArticle
Pagination570-583
Issue Number2
Volume Number8
dc.accessType Full Text


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record