• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Hybrid Deep Learning-Based (HYDRA) Framework for Multifault Diagnosis Using Sparse MDT Reports

    Thumbnail
    View/Open
    A_Hybrid_Deep_Learning-Based_HYDRA_Framework_for_Multifault_Diagnosis_Using_Sparse_MDT_Reports.pdf (2.203Mb)
    Date
    2022
    Author
    Riaz, Muhammad Sajid
    Qureshi, Haneya Naeem
    Masood, Usama
    Rizwan, Ali
    Abu-Dayya, Adnan
    Imran, Ali
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Diminishing viability of manual fault diagnosis in the increasingly complex emerging cellular network has motivated research towards artificial intelligence (AI)-based fault diagnosis using the minimization of drive test (MDT) reports. However, existing AI solutions in the literature remain limited to either diagnosis of faults in a single base station only or the diagnosis of a single fault in a multiple BS scenario. Moreover, lack of robustness to MDT reports spatial sparsity renders these solutions unsuitable for practical deployment. To address this problem, in this paper we present a novel framework named Hybrid Deep Learning-based Root Cause Analysis (HYDRA) that uses a hybrid of convolutional neural networks, extreme gradient boosting, and the MDT data enrichment techniques to diagnose multiple faults in a multiple base station network. Performance evaluation under realistic and extreme settings shows that HYDRA yields an accuracy of 93% and compared to the state-of-the-art fault diagnosis solutions, HYDRA is far more robust to MDT report sparsity.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2022.3185639
    http://hdl.handle.net/10576/60224
    Collections
    • Electrical Engineering [‎2821‎ items ]
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video