عرض بسيط للتسجيلة

المؤلفRiaz, Muhammad Sajid
المؤلفQureshi, Haneya Naeem
المؤلفMasood, Usama
المؤلفRizwan, Ali
المؤلفAbu-Dayya, Adnan
المؤلفImran, Ali
تاريخ الإتاحة2024-10-20T10:43:20Z
تاريخ النشر2022
اسم المنشورIEEE Wireless Communications and Networking Conference, WCNC
المصدرScopus
الرقم المعياري الدولي للكتاب15253511
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/WCNC51071.2022.9771947
معرّف المصادر الموحدhttp://hdl.handle.net/10576/60226
الملخصFault diagnosis is turning out to be an intense challenge due to the increasing complexity of the emerging cellular networks. The root-cause analysis of coverage-related network anomalies is traditionally carried out by human experts. However, due to the vast complexity and the increasing cell density of the emerging cellular networks, it is neither practical nor financially viable. To address this, many studies are proposing artificial intelligence (AI)-based solutions using minimization of drive test (MDT) reports. Nowadays, the focus of existing studies is either on diagnosing faults in a single base station (BS) only or diagnosing a single fault in multiple BS scenarios. Moreover, they do not take into account training data sparsity (varying user equipment (UE) densities). Inspired by the emergence of convolutional neural networks (CNN), in this paper, we propose a framework combining CNN and image inpainting techniques for root-cause analysis of multiple faults in multiple base stations in the network that is robust to the sparse MDT reports, BS locations and types of faults. The results demonstrate that the proposed solution outperforms several other machine learning models on highly sparse UE density training data, which makes it a robust and scalable solution for self-healing in a real cellular network.
راعي المشروعVI. ACKNOWLEDGMENT This research is based upon work supported by the National Science Foundation (NSF) under Grant numbers 1619346, 1730650 and Qatar National Research Fund (QNRF) under Grant no. NPRP12-S 0311-190302 . For more details about the projects, please visit: https://www.ai4networks.com
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعcellular data sparsity
convolutional neural networks
minimization of drive tests
multi-fault diagnosis
network automation
radio environment map inpainting
Root cause analysis
self-healing
العنوانDeep Learning-based Framework for Multi-Fault Diagnosis in Self-Healing Cellular Networks
النوعConference Paper
الصفحات746-751
رقم المجلد2022-April
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة