• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Data Driven Optimization of Inter-Frequency Mobility Parameters for Emerging Multi-band Networks

    View/Open
    Data_Driven_Optimization_of_Inter-Frequency_Mobility_Parameters_for_Emerging_Multi-band_Networks.pdf (5.775Mb)
    Date
    2020
    Author
    Bin Farooq, Muhammad Umar
    Manalastas, Marvin
    Raza, Waseem
    Ijaz, Aneeqa
    Zaidi, Syed Muhammad Asad
    Abu-Dayya, Adnan
    Imran, Ali
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Densification and multi-band operation in 5G and beyond pose an unprecedented challenge for mobility management, particularly for inter-frequency handovers. The challenge is aggravated by the fact that the impact of key inter-frequency mobility parameters, namely A5 time to trigger (TTT), A5 threshold1 and A5 threshold2 on the system's performance is not fully understood. These parameters are fixed to a gold standard value or adjusted through hit and trial. This paper presents a first study to analyze and optimize A5 parameters for jointly maximizing two key performance indicators (KPIs): Reference signal received power (RSRP) and handover success rate (HOSR). As analytical modeling cannot capture the system-level complexity, a data driven approach is used. By developing XGBoost based model, that outperforms other models in terms of accuracy, we first analyze the concurrent impact of the three parameters on the two KPIs. The results reveal three key insights: 1) there exist optimal parameter values for each KPI; 2) these optimal values do not necessarily belong to the current gold standard; 3) the optimal parameter values for the two KPIs do not overlap. We then leverage the Sobol variance-based sensitivity analysis to draw some insights which can be used to avoid the parametric conflict while jointly maximizing both KPIs. We formulate the joint RSRP and HOSR optimization problem, show that it is non-convex and solve it using the genetic algorithm (GA). Comparison with the brute force-based results show that the proposed data driven GA-aided solution is 48x faster with negligible loss in optimality.
    DOI/handle
    http://dx.doi.org/10.1109/GLOBECOM42002.2020.9348101
    http://hdl.handle.net/10576/60231
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video